Time to return your clickers

Take them to your lab instructors
• Take the College of Engineering Climate Survey – Extra Credit

• Start studying for Engr 10 final exam
The Engineering Profession

E10 - Introduction to Engineering

Charles W. Davidson
College of Engineering

Spring 2014
What do we mean by a Profession?¹

1. Requires specialized & highly skilled knowledge
2. Requires academic training
3. Regulated by professional bodies
4. Requires examination of competence
5. Function of professional work is vital to society
6. Perform under a standard of professional behavior that requires adherence to the highest principles of legal and ethical conduct²
7. Requires continuing education to keep current with rapidly changing technology
8. Professionals enjoy higher social status
9. Higher compensation
The Engineering Profession
Training, Qualifications, Advancements, Licensure

- BS required for all entry level engineering jobs

- Engineers trained in one field, may also work in a related field of engineering:

 Civil Chem E.
 ME BME
 Aero E ME
 EE Comp. E
 Chem E. Materials E

All 50 states require licensure for engineers who offer their services directly to the public\(^2\)
BS Degree

Engineer in Training (EIT) (FE Exam)

Professional Engineer (PE)
Training, Qualifications, Advancements, Licensure

A. Engineer In Training (EIT)
 • Fundamentals of Engineering (FE) Exam
 • Senior in or graduate of ABET accredited program

B. Professional Engineer (PE)
 • BS-ABET
 • Passed FE, or be waived of the FE
 • 4-Years work experience
 • Exam by NCEES (National Council of Examiners for Engineering and Surveying)
 1. Principles and Practice of Engineering
Being a licensed engineer

- The **PE license** allows you to call yourself a professional engineer
- Can have legal authority for engineering work (e.g. sign/stamp drawings, bid for government contracts, own company, serve as expert witness, etc.)
- Some states require at least one licensed engineer in a company.
What Engineers Do? (a review)

“Apply the principles of science and mathematics to develop economical solutions to technical problems”

1. **Design** products
2. **Build** and **test** these products
3. **Design** plants in which those products are made
4. **Design** systems that ensure the quality and efficiency of the manufacturing process
5. **Analyze** systems to evaluate their performance
6. **Develop** software to control systems
7. **Innovate** to improve performance of existing systems
Engineering Work Done in E10

Design: – Turbine blades, support structure (CE, ME, Aero)
 - Robot SWR and HDR (EE, Comp E, ME, SWR E)

Build Parts (Mfg): – Blades (z-printer), IR Board

Assembly: – Support structure, Motor installation. (CE, ME)
 – IRB, Robot car (EE, ME)

Test: – Blade performance. (Aero, EE, Excel)
 – Structure stiffness (EE, CE, ME)
 – IRB, Robot HDR/SWR

Communication: – Technical presentation and report
What kind of a pattern do we see on the last two slides?
The Engineering Process

- Design
- Develop
- Manufacture
- Assemble
- Test/Evaluate
- Communicate
- Analyze
Where do you see your self 10 years from now

Profession, Professional Level, Environment, Location, ……
Engineering Education Timeline

Fr. | So | Jr | Sr | What Next?

Time (years)

grad school

work

???
Earnings distribution by engineering specialty, 2009

<table>
<thead>
<tr>
<th>Specialty</th>
<th>25th Percentile</th>
<th>Median</th>
<th>75th Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerospace engineers</td>
<td>$60,000</td>
<td>$87,000</td>
<td>$115,000</td>
</tr>
<tr>
<td>Biomedical engineers</td>
<td>50,000</td>
<td>68,000</td>
<td>100,000</td>
</tr>
<tr>
<td>Chemical engineers</td>
<td>60,000</td>
<td>86,000</td>
<td>120,000</td>
</tr>
<tr>
<td>Civil engineers</td>
<td>57,000</td>
<td>78,000</td>
<td>103,000</td>
</tr>
<tr>
<td>Computer hardware engineers</td>
<td>69,500</td>
<td>88,470</td>
<td>111,030</td>
</tr>
<tr>
<td>Electrical engineers</td>
<td>60,000</td>
<td>85,000</td>
<td>110,000</td>
</tr>
<tr>
<td>Environmental engineers</td>
<td>51,000</td>
<td>70,000</td>
<td>93,000</td>
</tr>
<tr>
<td>Industrial engineers</td>
<td>55,000</td>
<td>75,000</td>
<td>101,000</td>
</tr>
<tr>
<td>Materials engineers</td>
<td>48,000</td>
<td>69,000</td>
<td>96,000</td>
</tr>
<tr>
<td>Mechanical engineers</td>
<td>59,000</td>
<td>80,000</td>
<td>105,000</td>
</tr>
<tr>
<td>Petroleum engineers</td>
<td>82,000</td>
<td>120,000</td>
<td>189,000</td>
</tr>
<tr>
<td>Engineering as a whole</td>
<td>53,000</td>
<td>75,000</td>
<td>102,000</td>
</tr>
</tbody>
</table>

Another source is the Bureau of Labor Statistics
From Student to Professional Engineer
Step 1

BS/MS

Majors
ME, EE, CE
ISE, SWR.E,
Comp.E ...

Specialization

Great web site for learning about each type of engineering
http://whatcanidowiththismajor.com/major/
Aero

- Aerodynamics
- Propulsion
- Flight Dynamics
- Structure & Materials
Fluid Dynamics
Thermo-dynamics
Mechanical Design
Mechatronics
Mechatronics
Mechanical, Electronic, Control & Computing systems
EE

- Power Generation
- Communication Systems
- LSI
- Electronics
Computer OR Software E

Hardware Design
Software Design
Networks
Databases
Chem. E

- Biochemical
- Polymers Plastics
- Food Processing
Mat. E

- Semiconductors
- Microelectronics
- Ceramics
Industrial & Systems Eng.

Enterprise Operations

Safety/Ergonomics

Quality Control
What are employers looking for in new graduates?

- Fast learners
- Team players

This is a major employer’s checklist of desired attributes of engineering graduates.
Group A: Good Understanding of:

1. Engineering science fundamentals:
 a. Physical and life science
 b. Information technology
 c. Math (including statistics)

2. The design and manufacturing process
 (fundamentals of engineering)

3. Good communication skills:
 a. Written
 b. Verbal
 c. Graphic
 d. Listening
Group B: Basic understanding of:

1. The context in which engineering is practiced, including:
 - Economics/business practice
 - History
 - The environment
 - Customer and social needs

2. A multidisciplinary systems perspective.

3. The importance of teamwork.

4. Ethical standards
1. Curiosity and a LifeLong desire to Learn. (LLL)

2. Ability to think critically and creatively as well as independently and cooperatively.

3. Flexibility – the ability and the self-confidence to adapt.
From Student to Professional
Step 2

BS/MS

Majors

Specialization

Functional (Job) Classification
Typical Product Cycle

- Idea/Concept
- Design/Modeling
- Feasibility study $$$
- Development/Prototyping
- Testing
- Product Documentation Specifications
- To MFG
- Facilities
- Training
- Packaging
- Tooling/Automation
- Production
- To Customer/Consumer
- Shipping
<table>
<thead>
<tr>
<th></th>
<th>Functional Classification - All majors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Research</td>
</tr>
<tr>
<td>2.</td>
<td>Experimental</td>
</tr>
<tr>
<td>3.</td>
<td>Analytical</td>
</tr>
<tr>
<td>4.</td>
<td>Design</td>
</tr>
<tr>
<td>5.</td>
<td>Development</td>
</tr>
<tr>
<td>6.</td>
<td>Testing</td>
</tr>
<tr>
<td>7.</td>
<td>Production</td>
</tr>
<tr>
<td>8.</td>
<td>Operations</td>
</tr>
<tr>
<td>9.</td>
<td>Sales/Marketing</td>
</tr>
<tr>
<td>10.</td>
<td>Customer (large systems)</td>
</tr>
<tr>
<td>11.</td>
<td>Management</td>
</tr>
<tr>
<td>12.</td>
<td>Consulting</td>
</tr>
<tr>
<td>13.</td>
<td>Construction</td>
</tr>
<tr>
<td>14.</td>
<td>Safety</td>
</tr>
<tr>
<td>Title</td>
<td>Function</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| Research E. | -Solve new problems
 -Obtain new data
 -Devise new methods of calculation
 -Gain new knowledge | Perceptiveness
 Patience
 Self-Confidence |
| Analytical E. | Model physical problems using math to predict performance
 Perform failure analysis | Math, physics, engineering,
 science, applications
 software |
| Development E.| -Develop products, processes, or systems
 -Use well-known principles and employ existing processes or machines to perform a new function
 -Concerned mostly with a prototype or model | Ingenuity
 Creativity
 Astute Judgment |
<table>
<thead>
<tr>
<th>Title</th>
<th>Function</th>
<th>SKILLS/Knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design E.</td>
<td>- Convert concepts & information into detailed plans & specs from which the finished product can be manufactured
- Restricted by the state of the art</td>
<td>Creativity

Innovation

Fundamental knowledge of many disciplines

Understanding of economics and people</td>
</tr>
<tr>
<td>Production E.</td>
<td>- Devise a schedule to efficiently coordinate materials and personnel
- Order raw materials at optimum times
- Set up the assembly line
- Handle and ship finished product</td>
<td>- Knowledge of design, economics & psychology
- Ability to visualize the overall operation of a project
- Knowledge of each step of the production effort</td>
</tr>
</tbody>
</table>
Test E.
- Develop & conduct tests to verify that a new product meets design specs
- Test products for structural integrity, performance, & reliability
- Testing is performed under all expected environmental conditions

SKILLS/Knowledge
- Knowledge of statistics, product & process specifications
- Measurement techniques
- Fundamental engineering aspects of the design

Operations or Plant E.
- Select sites for facilities
- Specify layout for all facets of the operation
- Select fixed equipment for climate control, lighting, and communication
- Responsible for maintenance and modifications

SKILLS/Knowledge
- Industrial engineering, economics and law
From Student to Professional Engineer
Step 3

BS/MS

Majors

Specialization

Functional (Job) Classification

Company Levels
Company Levels (Publicly owned)

Corporate Management

COB
Board of Directors
CEO
CFO
COO
CTO

V.P. of Marketing
V.P. of Engineering
V.P. of MFG
V.P. of

Director of
Director of

Management

Plant Mgt.
Functional Mgt.*
Project Mgt.
Line Mgt.
......

Engineering

Fellow*
Senior E.
Project E.
or Lead E.
Advisory*
Staff*
Sr. Associate E.*
Engineer
or “Entry Level”

* Large Co.
Bachelor of Science in Engineering: The Key to "Maaaaaany" Doors
Directions After BS “Engineering”

- **Advanced Degrees-Academic Institutions** (Teaching, researching, publishing, community involvement)
- **Engineering Management** (MSE/MBA)
- **Law** (Patent law: 45 units of engr/science w/Lab., Corporate Law)
- **Medicine** (bioengineering, prosthetics, “Bionic man/Women”)
- **Government, Defense, CalTrans**
- **Engineering Consultant**
- **Your Own Business**
- **007 ???**
Could 007 Have Been an Engineer?

BS Engineering

CIA
Engineering Careers at CIA

- College Students – Scientists & Engineers
 - Electrical Engineer
 - Materials Engineer
 - Mechanical Engineer
 - Program Management Engineer
 - Research Scientist
 - Science, Technology, and Weapons Analyst
 - Systems Engineer
 - Technical Operations Officer

(www.cia.gov/careers/jobs/view-all-jobs/index.html)
Thank you
References

1. Fledderman, C. *Engineering Ethics*
2. www.nspe.org
5. www.abet.org
6. www.wetfeet.com
8. Prism (?)